

General Certificate of Education

Mathematics 6360

MD01 Decision 1

Mark Scheme

2010 examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2010 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX Dr Michael Cresswell Director General

Key to mark scheme and abbreviations used in marking

			mm 2
		M	D01 - AQA GCE Mark Scheme 2010 January
Key to mark	scheme and abbreviations used in marking	g	SCIOUD.C
М	mark is for method		
m or dM	mark is dependent on one or more M marks	s and is for me	ethod
А	mark is dependent on M or m marks and is		
В	mark is independent of M or m marks and i	s for method a	and accuracy
Е	mark is for explanation		
\sqrt{or} ft or F	follow through from previous		
	incorrect result	MC	mis-copy
CAO	correct answer only	MR	mis-read
CSO	correct solution only	RA	required accuracy
AWFW	anything which falls within	FW	further work
AWRT	anything which rounds to	ISW	ignore subsequent work
ACF	any correct form	FIW	from incorrect work
AG	answer given	BOD	given benefit of doubt
SC	special case	WR	work replaced by candidate
OE	or equivalent	FB	formulae book
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme
–x EE	deduct <i>x</i> marks for each error	G	graph
NMS	no method shown	с	candidate
PI	possibly implied	sf	significant figure(s)
SCA	substantially correct approach	dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

MD01 - AQA GCE Mark Scheme 2010 January

aths

Solution A M B N C P	Marks	<u>Total</u>	Comments
B • N			
	M1 A1	2	Bipartite graph, 2 sets of (some) vertices, labelled, 6+ edges
AP, BR, CN, ES			
$D-R \neq B \qquad V-C \neq N \qquad M-A \neq P$ F-R + B $D-S \neq E \qquad V-E \neq S$	M1 M1		1 correct 2^{nd} path started correctly, must be different start point from 1^{st} path (allow F - R + D for 2^{nd} M1 if D - R + B first)
D - R + B - N + C - V F - R + D - S + E - P + A - M	A1 A1		or reverse or reverse, but two paths must be in this order
OR $D-S \neq E-V$ $F-R \neq B-N \neq C-V \neq E-P \neq A-M$	(A1) (A1)		or reverse or reverse, but two paths must be in this order
OR $F - R \neq B - N \neq C - V$ $D - S \neq E - P \neq A - M$	(A1) (A1)		or reverse or reverse, the two paths can be in either order
AM, BN, CV, DS, EP, FR	B1	5	Must be written as a list
	F = F + B - N + C - V $F = R + B - N + C - V$ $F = R + D - S + E - P + A - M$ $F = R + B - N + C - V + E - P + A - M$ $F = R + B - N + C - V + E - P + A - M$ $F = R + B - N + C - V + E - P + A - M$	AT $E = \sum_{F \to V} \sum_{V \to$	F = A + B - N + C - V $F - R + B - N + C - V$ $F - R + B - N + C - V$ $F - R + B - N + C - V + E - P + A - M$ $A1$ $A1$ $A1$ $A1$ $A1$ $A1$ $A1$ $A1$

MD01 - AQA GCE Mark Scheme 2010 January

$\mathbf{\Omega}$)	Solution		Marks	Total	Comments
Q		Solution		Marks	Total	Comments
2(a)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6 7 7 16 13 16 13 16 13 16 13 16	M1 A1 A1 A1		SCA, must have 16 at end of first pass 1st pass 2nd pass 3rd pass
	4 6 7 4 6 7		13 16 13 16	A1	5	All correct, must have only 2 identical lines at end. Ignore any intermediate lines and labelling on lines.
(b)	1st 2nd 3rd	C S 7 6 6 6 5 3	_	B3;2;1	3	6 correct; 5 correct; 3 correct – with number of comparisons and swaps being clearly identified for each of the three passes (may be earned in part (a))
			Total		8	
			FR	8 10		
				M1 A1 B1 B1 B1 B1	6	line $y = mx$, must be correct to 1 square horizontally or vertically at origin through (0, 0) and (4, 8) through (0, 0) and (16, 4) line through (15, 8) and (17, 0) line through (4, 8) and (12, 6) FR must have scored previous 5 marks and labelled region (condone no shading)
(b)(i)	Max (4, 8) = 44			B1 B1	2	Coordinates must be stated explicitly

MD01 - AQA GCE Mark Scheme 2010 January

Taths

D01 (cont				- Ug
Q	Solution	Marks	Total	Comments Use of Prim's (not Kruskal's and not
4(a)(i)	<i>AC</i> 13	M1		
	<i>AE</i> 14			path); 6+ edges (no cycles); edges, not
	<i>EI</i> 15			lengths or vertices, with first 2 edges
	CD 16	D1		correct
	CH 20 EF 21	B1 A1		8 edges CH 5th
	<i>EF</i> 21 <i>FB</i> 19	A1 A1		<i>EF</i> 6th
	BG 19	A1 A1	5	All correct
		211	5	
(ii)	137	B1	1	
(iii)	G			
		M1		6+ edges, no cycles
		A1	2	Correct, including labelling
		111	2	Correct, including labelling
(b)	(Odds) <i>B</i> , <i>C</i> , <i>D</i> , <i>E</i>	E1		PI CAO
	BC + DE = 22 + 18 (or 40)	M1		3 correct sets of pairs (lettered)
	BD + CE = 38 + 27 (or 65)	1111		s concet sets of pairs (rettered)
		4.2.1		
	BE + CD = 22 + 16 (or 38)	A2;1		3 correct sets of numbers; 2 correct sets of numbers
	$\min = 307 + 38$	A1F		PI 307 plus their shortest
	=345	B1	6	
				SC:
				345 with no M mark scored scores 2/last 5
				Route without 345 scores 0/last 5
	Total		14	

MD01 - AQA GCE Mark Scheme 2010 January

D01 (cont)		7-1 (*				М	T	<u> </u>	90
Q			<u>Solutio</u>		D)		Marks	Total	Com	ments
5(a)	(B E	С	D	A	B) 12(.0)		B1	1		
(b)	B D	Α	С	Ε	В		M1 m1		Tour starts/finishes at <i>B</i> Visits <i>B</i> twice and all other vertices once	If solution only on a matrix, then order of selection of vertices must be clearly shown
				=	13.5		A1 B1	4	Correct order	
(c)	12(.0)						B1F	1	Their min, condone	writing 'part (a)' ft
(d)	B A	D	Ε	С	В		M1		Tour starts/finishes at <i>B</i>	If solution only on a matrix, then order
							m1		Visits <i>B</i> twice and all other vertices once	of selection of vertices must be clearly shown
				_	12.1		A1 B1	4	Correct order	
						Total	21	10		
6(a)	(A) (B) (1) (5)	(<i>N</i>) (2)	T 0 126 100	D 1 3	<u>Н</u> 2	<u>Е</u> 1	M1 A1 m1		<i>T</i> = 126	second value for T for all other variables
	("Area =")	180	180	5			A1	4	and 2 values for D	cluding final value of
(b)	(A) (B) (1) (5)	(<i>N</i>) (4)	<i>T</i> 0	D 1	<i>H</i> 1	<u>Е</u> 0.5	M1		<i>B</i> , <i>N</i> and their values SCA as above	
			126 142	2 3			A1		<i>T</i> = 142	
			196 324	4 5			ml		T = (324) 5 values for	r <i>T</i>
	("Area =")	162	1	J J	1	I I	A1	4	All correct values ind 162 and no extra values <i>B</i> , <i>N</i> and their values	
						Total		8		

MD01 - AQA GCE Mark Scheme 2010 January

aths

1 (cont Q	Solution	Marks	Total	Comments
<u>v</u> 7(a)	Solution	171AI K3	IUIAI	Comments
()			24	
	20	$\langle $	> 20	
	20	9	20	
	5 8	F 15		J 27
	10		12	
	5 4	4	18	23
		G		$K = 20 \qquad (28 + 3x + y) M (38 + x + y)$
		19	x + y	18 + x + y = 50
		18 2	17	3x + y
		H		
	<u>6</u> D 10	16	12	
	20	9	20	
		\searrow		
		I 26 2	5	
		M1	I	SCA cancelling at C (PI)
		Al		Correct values at C
		ml		3 values at G
		A1		Correct values at G
		m1		2 values at both <i>E</i> and <i>I</i>
		A1		All correct, with no extra values, and including $10 + m$ based at K
		B1	7	including $18 + x + y$ boxed at <i>K</i> 50 at <i>M</i> (diagram takes precedence over
		DI	,	answer book)
(b)	3x + y (=22) OE	M1		setting up simultaneous equations
	x + y (=12) OE			
	$\therefore x=5, y=7$	A1+1	3	CSO
			10	SC $x = 5$, $y = 7$ with no working $3/3$
8	Total		10	
0	$2x+3y+4z \le 360$			
	$3x+y+5z \le 300$	B2,1,0		
	$4x + 3y + 2z \le 400 \Big]$			
	2x+3y+4z(>)3x+y+5z	M1		Their A (>) their B
	2y > x + z	A1		OE
	$5x + 4y + 9z (\ge) 4x + 3y + 2z$	M1		Their A + B (\geq) their C
	$x + y + 7z \ge 0$	A1		OE
	$4x + 3y + 2z \ge \frac{40}{100} (9x + 7y + 11z)$	M1		Their C (\geq) 40% of their total OE
		1011		
	$2x + y \ge 12z$	A1	8	OE
	Total		8	
	TOTAL		75	